About QUALITROL
Established in 1945, with continual improvement at the core of our business, QUALITROL provides smart utility asset condition monitoring across the globe. We are the largest and most trusted global leader for partial discharge monitoring, asset protection equipment and information products across generation, transmission and distribution. At QUALITROL, we are redefining condition monitoring technology for Electric utilities assets.

QCM-C-PDP
Portable partial discharge monitor for cables

Online PD measurement at power cables without disrupting plants / facilities - offline factory testing
Excellent interference immunity for PD measurement under difficult conditions
Highest level of reliability of PD inspection
Highly accurate fault location and PD severity analysis
Power cables are not exposed to higher voltage stresses
PD measurement and analysis with total confidence
Unbiased diagnosis and assessment of critical power cables
Expert consulting services during acceptance testing and maintenance planning are available
Overall insulation health assessment and extension of life time of power cable
Implementation of efficient condition based maintenance strategies

Ensuring reliable continued operation of power cables and termination boxes of metal clad switchgear, rotating machines and transformers

- Highly accurate periodic PD survey of HV/MV power cables eliminates risk of unplanned outages
- Precise PD localization (within 0.2% to 1% of cable length) minimizes maintenance expenditure
- Accurate categorization of different activities captured by system
- Robust and rugged design to maximize portable operation life and support inspections / testing for extended period of time
- Advanced denoising and filtering help to remove background noise efficiently

Product Summary

Description
The QCM-C-PDP portable system can be used to measure partial discharges in power cables and terminations boxes of metal clad switchgear, rotating machines and transformers. PD can be localized within 0.2% to 1% of the cable length. The QCM-C-PDP can be applied to measure PD on-line on cables and their termination boxes while the system is energized. There is no need to de-energize the cables if some requirements are met.

Application
The QCM-C-PDP cable online PD measurement system can be successfully used for measuring partial discharge in cables with confidence. Used for low-cost, high performance periodic online and offline PD testing on HV insulating system of power cables and their terminations in transmission installations, power plants and large industrial consumers. The information gained may be used for condition based maintenance decisions.
Highly accurate periodic PD survey of HV/MV power cables eliminates risk of unplanned outages

- Failure in cable insulation is generally preceded by partial discharge and subsequent degradation phase
- Detecting partial discharge at the early stage of degradation helps in preventing sudden failure
- The QCM-C-PDP system makes sure that there is no PD in the installed power cables
- HFCTs (High Frequency Current Transformers) used in the systems are sensitive to a wide range of frequency (200 kHz - 15 MHz)
- TEV (Transient Earth Voltage) sensors to differentiate between PD and local discharge (Corona, surface discharge)
- Advanced de-noising based on proven noise gating technology - Wavelet Filtering
- Categorization of different activities captured during acquisition
- Prioritizing corrective actions or replacements can be decided based upon analysis and reports
- Highly accurate location algorithms based on “Time Domain Reflectometry” (TDR)
- Higher acquisition rate and dynamic threshold selection improves definition on PD events
- Transponder is used for longer cables to improve the accuracy of detecting PD location along the length of cable
- More than 25 years of experience in PD analysis into HV apparatus

Why partial discharge measurement in power cables?

- Failure in cable insulation is generally preceded by a degradation phase which may last for months or several years
- Any insulation degradation results in the inception of partial discharges (PD) at degradation site(s)
- PD analysis and localisation helps in determining the insulation health and subsequently the life of power cables

Why QUALITROL Expert diagnostic and testing services?

- More than 25 years of experience in providing PD monitoring systems and services to utilities across the world
- World wide presence provides quick turn around times
- Long term serviceability assurance helps in formulating longer service contracts
- Cross team integration increases the accuracy of results and confidence of operator / asset manager
- Highly accurate PD detection and localisation system for power cables
- Greater emphasis on health and safety during PD measurements surveys

System overview

Sensors
- HFCT sensors detect the high frequency signals induced from any PD pulse inside the cable insulation and send to data acquisition unit for further analysis. TEV sensors are used to detect the corona and surface discharge. It helps in differentiating PD activity inside the insulation from corona and surface discharge

Data Acquisition Unit
- The DAU takes the signal from sensors and applies filtering and noise gating to reject interference. The digitised high frequency pulse is then sent to the Analysis System for further analysis

Analysis System
- The PD analysis system determines if the high frequency signal is a PD signal or not. It stores all PD signals with their parameters for trend analysis. The PD analysis system also locates the fault along the cable with an accuracy of less than 0.2% to 1% of the total cable length

Transponder
- The Transponder is used for PD localization in cases of long cables > 3 km (1.8 miles). It injects the pulse back after receiving the actual PD signal in order to make comparison simpler for the system

Online and non-intrusive PD measurement
- HFCTs can be clamped on the energised cable earth
- TEVs can be attached magnetically to the metal clad switchgear (even when the cables are operational)
- HFCTs are passive and do not have any impact on the electric field of cable
- Easy to connect with the data acquisition unit and analysis system

Precise PD localization (within 0.2% to 1% of cable length) minimizes maintenance expenditure

- Highly accurate location algorithms based on “Time Domain Reflectometry” (TDR)
- Higher acquisition rate and dynamic threshold selection improves definition on PD events
- Transponder is used for longer cables to improve the accuracy of detecting PD location along the length of cable
- More than 25 years of experience in PD analysis into HV apparatus

Accurate categorization of different activities captured by the system
- The most important stage before data analysis is the separation of different activities captured during acquisition
- Expert analysis software successfully categorizes the different activities captured
- Categories can then be easily marked as Cable PD, External PD, Noise or Interference
- Localization of cable PD can be done easily by examining a few segments inside the category

Robust and rugged design to maximize portable operation life and support inspections / testing for extended period of time

- IP66 rated highly protective case
- System integrated with filters and surge protection
- Online support by researchers and experts from Qualitrol DMS, Glasgow

Why QUALITROL C-PDP

Portable partial discharge monitor for cables
Highly accurate periodic PD survey of HV/MV power cables eliminates risk of unplanned outages

- Failure in cable insulation is generally preceded by partial discharge and subsequent degradation phase
- Detecting partial discharge at the early stage of degradation helps in preventing sudden failure
- The QCM-C-PDP system makes sure that there is no PD in the installed power cables
- HFCTs (High Frequency Current Transformers) used in the systems are sensitive to a wide range of frequency (200 kHz - 15 MHz)
- TEV (Transient Earth Voltage) sensors to differentiate between PD and local discharge (Corona, surface discharge)
- Advanced de-noising based on proven noise gating technology - Wavelet Filtering
- Categorization of different activities captured during acquisition
- Prioritizing corrective actions or replacements can be decided based upon analysis and reports
- Advanced de-noising based on proven noise gating technology - Wavelet Filtering
- Categorization of different activities captured during acquisition
- Prioritizing corrective actions or replacements can be decided based upon analysis and reports
- The QCM-C-PDP system makes sure that there is no PD in the installed power cables
- Highly accurate location algorithms based on “Time Domain Reflectometry” (TDR)
- Higher acquisition rate and dynamic threshold selection improves definition on PD events
- Transponder is used for longer cables to improve the accuracy of detecting PD location along the length of cable
- More than 25 years of experience in PD analysis into HV apparatus
- The most important stage before data analysis is the separation of different activities captured during acquisition
- Expert analysis software successfully categorizes the different activities captured
- Categories can then be easily marked as Cable PD, External PD, Noise or Interference
- Localization of cable PD can be done easily by examining a few segments inside the category
- IP66 rated highly protective case
- System integrated with filters and surge protection
- Online support by researchers and experts from Qualitrol DMS, Glasgow

- Precise PD localization (within 0.2% to 1% of cable length) minimizes maintenance expenditure
- Highly accurate location algorithms based on “Time Domain Reflectometry” (TDR)
- Higher acquisition rate and dynamic threshold selection improves definition on PD events
- Transponder is used for longer cables to improve the accuracy of detecting PD location along the length of cable
- More than 25 years of experience in PD analysis into HV apparatus

Why QUALITROL Expert diagnostic and testing services?

- More than 25 years of experience in providing PD monitoring systems and services to utilities across the world
- World wide presence provides quick turn around times
- Long term serviceability assurance helps in formulating longer service contracts
- Cross team integration increases the accuracy of results and confidence of operator / asset manager
- Highly accurate PD detection and localisation system for power cables
- Greater emphasis on health and safety during PD measurements surveys

System overview

Sensors
- HFCT sensors detect the high frequency signals induced from any PD pulse inside the cable insulation and send to data acquisition unit for further analysis. TEV sensors are used to detect the corona and surface discharge. It helps in differentiating PD activity inside the insulation from corona and surface discharge

Data Acquisition Unit
- The DAU takes the signal from sensors and applies filtering and noise gating to reject interference. The digitised high frequency pulse is then sent to the Analysis System for further analysis

Analysis System
- The PD analysis system determines if the high frequency signal is a PD signal or not. It stores all PD signals with their parameters for trend analysis. The PD analysis system also locates the fault along the cable with an accuracy of less than 0.2% to 1% of the total cable length

Transponder
- The Transponder is used for PD localization in cases of long cables > 3 km (1.8 miles). It injects the pulse back after receiving the actual PD signal in order to make comparison simpler for the system

Online and non-intrusive PD measurement
- HFCTs can be clamped on the energised cable earth
- TEVs can be attached magnetically to the metal clad switchgear (even when the cables are operational)
- HFCTs are passive and do not have any impact on the electric field of cable
- Easy to connect with the data acquisition unit and analysis system

Why partial discharge measurement in power cables?

- Failure in cable insulation is generally preceded by a degradation phase which may last for months or several years
- Any insulation degradation results in the inception of partial discharges (PD) at degradation site(s)
- PD analysis and localisation helps in determining the insulation health and subsequently the life of power cables

PD analysis system (installed in Laptop)
Software overview

Data storage
• All information about the test as well as acquisition and analysed results are saved in a database so that personnel using the system can retrieve the data later on when required without fear of losing test files. Data can be easily exported and imported.

Self testing
• Self testing of the system can be performed to ensure the proper working of internal circuitry.

Offline calibration
• Representing the values in picocoulombs (pC) requires the calibrated HFCTs or offline calibration. The latter is the most accurate. Software provides facility to perform offline pC calibration in order to show the magnitude of HFCT accurately in pC.

Return time measurement
• In order to locate PD along the length of cable accurately, return time measurement of the pulse along the length of the cable is important. The software enables the user to record return time of pulse along with the help of a transponder.

Denoising
• The software performs noise rejection and filtering automatically if activated. Recorded data is stored in the database for further analysis by the Expert Analysis section.

Expert Analysis
• The complete recorded data is analysed and all the activities are separated out as different categories. Each category contains pulses of the same characteristics. Trend plots, maximum, average and pulse count phase resolved cumulative distributions, pulse shapes, localization pulse, PD localization mapping and 3D plots can be viewed for each category on each channel or as cumulative activity at each channel.

Reporting
• Reports can be generated after Expert Analysis to include the following:
 - Maximum, average and pulse count phase resolved distributions of each channel versus external sensor
 - Pulse shape of category and simultaneous pulses on other channels
 - Localization pulse
 - PD localization mapping
 - 3D plot of phase, magnitude and acquisition index
 - Plots for each category of each channel

The measuring method
• The system is capable of detecting and locating partial discharge in all kind of HV/MV cables:
 - XLPE, EPR, PVC, PILC, etc. cable
 - Single core and multi core cable
 - Cables of any length or any number of joints

• PD measurements are made using HFCT and TEV sensors that are clamped over the earth screen. HF Signals are captured synchronously enabling the test engineer to observe phase-related patterns of discharge, online and in real-time.

• The Expert analysis system provides an automatic PD detection and criticality level for the cable based on magnitude and number of PD pulses per power cycle. Qualitrol experts and the PD analysis system together are capable of differentiating PD activity from external noise and local discharges, e.g. corona, surface discharge, switchgear PD, etc.

• The “Time Domain Reflectometry” (TDR) algorithm is used to accurately locate the PD to an accuracy of less than 0.2% to 1% of the cable length.

• The Transponder is used at the other end of the cable section to keep the similar accuracy of localisation in the longer cable sections (greater than 3 km).
Software overview

Data storage
- All information about the test as well as acquisition and analysed results are saved in a database so that personnel using the system can retrieve the data later on when required without fear of losing test files. Data can be easily exported and imported.

Self testing
- Self testing of the system can be performed to ensure the proper working of internal circuitry.

Offline calibration
- Representing the values in picocoulombs (pC) requires the calibrated HFCTs or offline calibration. The later is the most accurate. Software provides facility to perform offline pC calibration in order to show the magnitude of HFCT accurately in pC.

Return time measurement
- In order to locate PD along the length of cable accurately, return time measurement of the pulse along the length of the cable is important. The software enables the user to record return time of pulse along with the help of a transponder.

Denoising
- The software performs noise rejection and filtering automatically if activated. Recorded data is stored in the database for further analysis by the Expert Analysis section.

Expert Analysis
- The complete recorded data is analysed and all the activities are separated out as different categories. Each category contains pulses of the same characteristics. Trend plots, maximum, average and pulse count phase resolved cumulative distributions, pulse shapes, localization pulse, PD localization mapping and 3D plots can be viewed for each category on each channel or as cumulative activity at each channel.

Reporting
- Reports can be generated after Expert Analysis to include the following:
 - Test Information
 - Plots for each channel
 - Trend plot of each channel versus external sensor
 - Maximum, average and pulse count phase resolved distributions of each channel versus external sensor
 - Localization pulse
 - PD localization mapping
 - 3D plot of phase, magnitude and acquisition index

The measuring method
- The system is capable of detecting and locating partial discharge in all kind of HV/MV cables:
 - XLPE, EPR, PVC, PILC, etc. cable
 - Single core and multi core cable
 - Cables of any length or any number of joints
- PD measurements are made using HFCT and TEV sensors that are clamped over the earth screen. HF Signals are captured synchronously enabling the test engineer to observe phase-related patterns of discharge, online and in real-time.
- The Expert analysis system provides an automatic PD detection and criticality level for the cable based on magnitude and number of PD pulses per power cycle. Qualitrol experts and the PD analysis system together are capable of differentiating PD activity from external noise and local discharges, e.g. corona, surface discharge, switchgear PD, etc.
- The “Time Domain Reflectometry” (TDR) algorithm is used to accurately locate the PD to an accuracy of less than 0.2% to 1% of the cable length.
- The Transponder is used at the other end of the cable section to keep the similar accuracy of localisation in the longer cable sections (greater than 3 km).
QCM-C-PDP Portable partial discharge monitor for cables

System components

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 channel portable system (integrated with hardware filters, protection, acquisition, power supply and synchronization)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFCT (set of 2)</td>
<td>1</td>
</tr>
<tr>
<td>Coaxial cables</td>
<td>2</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10m coaxial cables</td>
<td>4</td>
</tr>
<tr>
<td>Power cable</td>
<td>1</td>
</tr>
<tr>
<td>Earth cable</td>
<td>1</td>
</tr>
<tr>
<td>High Frequency Current Transformers</td>
<td>3</td>
</tr>
<tr>
<td>Noise antenna</td>
<td>1</td>
</tr>
<tr>
<td>Laptop, with installed software</td>
<td>1</td>
</tr>
</tbody>
</table>

Outline Of QCM-C-PDP System Components

- USB link to laptop to acquire data, analyze and generate reports
- AC supply
- Earth cable
- Other 2 HFCTs
- Transponder receives small PD pulses from one HFCT and injects a high magnitude pulse back into the cable
- TEV sensor to detect external discharges
- HFCT sensor to detect cable internal discharges
- Long length of power cable

Technical Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PDP system</td>
<td>Voltage range 90 to 264 V AC, 47 to 63 Hz</td>
</tr>
<tr>
<td>Supply power</td>
<td>70 W</td>
</tr>
<tr>
<td>Input</td>
<td>4 channels (can take output from HFCT, TEV, noise antenna)</td>
</tr>
<tr>
<td>Surge protection</td>
<td>> 90V</td>
</tr>
<tr>
<td>Sampling rate</td>
<td>125 MS/s</td>
</tr>
<tr>
<td>Transponder</td>
<td>Input 1 Channel (captured PD pulse >10 mV from HFCT)</td>
</tr>
<tr>
<td>Output</td>
<td>2 outputs: 1 - HV pulse 180 V (out into HFCT), 2 - trigger pulse 5 V</td>
</tr>
<tr>
<td>Mode of operation</td>
<td>Free running mode and trigger mode</td>
</tr>
<tr>
<td>Power</td>
<td>Rechargeable battery, runs for 8 hours</td>
</tr>
<tr>
<td>HFCT sensors</td>
<td>Mounting Clamped around cable earth</td>
</tr>
<tr>
<td>Output</td>
<td>Coaxial analog output (BNC type)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>200 kHz - 15 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>up to 10 mV/mA</td>
</tr>
<tr>
<td>TEV sensors</td>
<td>Mounting Magnetically attached to metal clad</td>
</tr>
<tr>
<td>Output</td>
<td>Coaxial analog output (BNC type)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1 MHz - 50 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Up to 100 mV/V</td>
</tr>
<tr>
<td>Noise sensor</td>
<td>RF antenna</td>
</tr>
<tr>
<td>HV testing</td>
<td>Compatible</td>
</tr>
<tr>
<td>Environmental</td>
<td>Ambient operating temperature</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25° to +85°C [-13° to +185°F]</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 - 95% non-condensing</td>
</tr>
<tr>
<td>Enclosure rating</td>
<td>IP66 when closed</td>
</tr>
<tr>
<td>Seismic</td>
<td>IEEE C37.98 (Seismic Testing of Relays)</td>
</tr>
<tr>
<td>Vibration test compliance</td>
<td>BS EN 60068-2-2, BS EN 60068-2-1, BS EN 60068-2-78</td>
</tr>
<tr>
<td>Vibration test compliance</td>
<td>BS EN 68-2-6, BS EN 68-2-27, BS EN 68-2-29</td>
</tr>
<tr>
<td>Immunity</td>
<td>EMC test compliance</td>
</tr>
<tr>
<td>Others</td>
<td>EMI / RFI immunity</td>
</tr>
<tr>
<td>Optional</td>
<td>Calibrator</td>
</tr>
<tr>
<td>Sync unit</td>
<td>External sync unit can be used to synchronize the system to external trigger</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Dimensions</td>
</tr>
<tr>
<td>Weight</td>
<td>Main unit: 15 kg [33 lbs] Accessory box: 18 kg [40.3 lbs]</td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>C-PDP system</th>
<th>Voltage range</th>
<th>90 to 264 V AC; 47 to 63 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supply power</td>
<td>70 W</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>4 channels (can take output from HFCT, TEV, noise antenna)</td>
</tr>
<tr>
<td></td>
<td>Surge protection</td>
<td>> 90V</td>
</tr>
<tr>
<td></td>
<td>Sampling rate</td>
<td>125 MS/s</td>
</tr>
<tr>
<td>Transponder</td>
<td>Input</td>
<td>1 Channel (captured PD pulse >10 mV from HFCT)</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>2 outputs: 1 - HV pulse 180 V (out into HFCT), 2 - trigger pulse 5 V</td>
</tr>
<tr>
<td></td>
<td>Modes of operation</td>
<td>Free running mode and trigger mode</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>Rechargeable battery, runs for 8 hours</td>
</tr>
<tr>
<td>HFCT sensors</td>
<td>Mounting</td>
<td>Clamped around cable earth</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>Coaxial analog output (BNC type)</td>
</tr>
<tr>
<td></td>
<td>Bandwidth</td>
<td>200 kHz - 15 MHz</td>
</tr>
<tr>
<td></td>
<td>Sensitivity</td>
<td>up to 10 mV/mA</td>
</tr>
<tr>
<td>TEV sensors</td>
<td>Mounting</td>
<td>Magnetically attached to metal clad</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>Coaxial analog output (BNC type)</td>
</tr>
<tr>
<td></td>
<td>Bandwidth</td>
<td>1 MHz - 50 MHz</td>
</tr>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Up to 100 mV/V</td>
</tr>
<tr>
<td>Noise sensor</td>
<td>RF antenna</td>
<td>100 - 3000 MHz</td>
</tr>
<tr>
<td>HV testing</td>
<td>Compatible</td>
<td>Ability to monitor and record PD during testing</td>
</tr>
<tr>
<td>Optional</td>
<td>Calibrator</td>
<td>Calibration can be supplied to perform offline pC calibration</td>
</tr>
<tr>
<td></td>
<td>Sync unit</td>
<td>External sync unit can be used to synchronize the system to external trigger</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Dimensions</td>
<td>800 mm x 600 mm x 350 mm [31.5" x 23.6" x 13.8"]</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>Main unit: 15 kg [33 lbs]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accessory box: 16 kg [35.3 lbs]</td>
</tr>
</tbody>
</table>
About QUALITROL®

Established in 1945, with continual improvement at the core of our business, QUALITROL® provides smart utility asset condition monitoring across the globe. We are the largest and most trusted global leader for partial discharge monitoring, asset protection equipment and information products across generation, transmission and distribution. At QUALITROL®, we are redefining condition monitoring technology for Electric utilities assets.

Online PD measurement at power cables without disrupting plants / facilities - offline factory testing

Excellent interference immunity for PD measurement under difficult conditions

Highest level of reliability of PD inspection

Highly accurate fault location and PD severity analysis

Power cables are not exposed to higher voltage stresses

PD measurement and analysis with total confidence

Unbiased diagnosis and assessment of critical power cables

Expert consulting services during acceptance testing and maintenance planning are available

Overall insulation health assessment and extension of life time of power cable

Implementation of efficient condition based maintenance strategies

QCM-C-PDP

Portable partial discharge monitor for cables

Ensuring reliable continued operation of power cables and termination boxes of metal clad switchgear, rotating machines and transformers

- Highly accurate periodic PD survey of HV/MV power cables eliminates risk of unplanned outages
- Precise PD localization (within 0.2% to 1% of cable length) minimizes maintenance expenditure
- Accurate categorization of different activities captured by system
- Robust and rugged design to maximize portable operation life and support inspections / testing for extended period of time
- Advanced denoising and filtering help to remove background noise efficiently

Product Summary

Description

The QCM-C-PDP portable system can be used to measure partial discharges in power cables and terminations boxes of metal clad switchgear, rotating machines and transformers. PD can be localized within 0.2% to 1% of the cable length. The QCM-C-PDP can be applied to measure PD on-line on cables and their termination boxes while the system is energized. There is no need to de-energize the cables if some requirements are met.

Application

The QCM-C-PDP cable online PD measurement system can be successfully used for measuring partial discharge in cables with confidence. Used for low-cost, high performance periodic online and offline PD testing on HV insulating system of power cables and their terminations in transmission installations, power plants and large industrial consumers. The information gained may be used for condition based maintenance decisions.