Reduce downtime by getting to the fault faster

Track intermittent self clearing faults and focus maintenance at the right spot to prevent a major breakdown

Accurate results from circuit trips automatically available in the dispatch center within minutes of the event

Maintenance crews alerted by email notification

Supersedes the successful TWS Mark VI and DSFL devices

**Product Summary**

**Description**
A device that provides extremely precise fault location on multiple lines enabling operation and maintenance engineers to respond rapidly to events and correct defects at minimum cost and maximum efficiency.

**Application**
Fault location on interconnected overhead lines where high availability is important. Accurate, consistent results for all types of faults quickly displayed in a control room or engineering centre where it is needed to direct maintenance teams and reduce downtime.

**TWS FL-8 and TWS FL-1**
Traveling wave fault locators

minimize search time and reduce expensive downtime...what is your time worth?

QUALITROL® Field Services
QUALITROL® provides on-site commissioning/start-up and comprehensive maintenance contracts to all customers worldwide. To further improve reliability, an extended warranty is available on selected products commissioned by QUALITROL®.

QUALITROL® Educational Services
QUALITROL® professional training (designed to achieve hands-on performance based objectives) prepares operations, maintenance, and engineering personnel to install, test, configure, operate and maintain QUALITROL® products.

QUALITROL® Accelerated Delivery
QUALITROL® provides accelerated delivery on many products and services including replacements, spare parts and repairs.

About QUALITROL®
QUALITROL® manufactures substation and transformer monitoring and protection devices used by electric utilities and manufacturing companies. It is the global leader in sales and installations of transformer asset protection equipment, fault recorders and fault locators. Established in 1945, QUALITROL® produces thousands of different types of products on demand, each customized to customers’ unique requirements.
TWS FL-8 and TWS-FL-1 Traveling wave fault locators

- Best accuracy to ±60 meters (±195 feet) independent of impedance methods
- Returns quality results for all types of faults, including high resistance ground faults and open circuit
- Accuracy is independent of line length, remote end infeed, non uniform line construction, conductor asymmetry and mutual coupling
- Can be used on lines with series compensation and tapped loads
- It is possible to compensate for lengths of underground cable

Reduce downtime by getting to the fault site faster

- Consistent accuracy eliminates need to send out multiple line patrols and helicopters to identify the fault site
- Can save hours of search time and reduce costs
- Faster restoration time reduces system risk posed by the possibility of a second or third coincident fault
- Faster restoration time reduces the costs of running uneconomic generation needed to maintain system security during the line outage

Track intermittent self clearing faults and focus maintenance at the right spot to prevent a major breakdown

- Most overhead line faults are transient and can be successfully re-closed
- Multiple trips can occur at the same place over time due to a damaged insulator, growth of vegetation or conductor clashing
- Accurate fault location pinpoints these trouble spots
- Planned maintenance can be undertaken to fix the ‘minor’ transient problem before it becomes a ‘major’ permanent one
- Fewer line trips reduces the number of voltage dips and subsequent customer complaints

Accurate results from circuit trips automatically displayed in the dispatch centre within minutes of the event

- A line trip is recognized by a change of state on a digital input or a 61850 GOOSE message
- A request for poll is sent to the central dispatch centre immediately after a line trip. The central PC polls each end of the line to retrieve data, calculate results and display them in a simple list view on a single screen
- Alternatively, the central software can be set to routinely poll all devices to collect data and display results

Maintenance crews alerted by email notification

- Fast, automatic dissemination of results gets the information directly to the maintenance teams
- Results can be filtered to select only those associated with a line trip
- No need for intervention by protection engineers - saves time

Fast installation and set up on multiple lines - no line or substation outage required

- Most installations completed in one day
- FL-8 monitors up to 8 circuits, FL-1 limited to one circuit
- Split-core linear couplers are placed around the secondary wiring of the protection current transformers to capture the traveling waves
- Can be installed with the circuit still alive
- Device configuration via a web page - no special software required

Display, keypad and USB port allow more interaction with the device

- Device status is available from the display - no need for a PC
- Can view line module trigger time tags if remote communications have failed
- Data can be downloaded onto a memory stick plugged into the USB port
- A programmed memory stick can be used to upload device firmware and configurations

Modular, reliable hardware - flexible communications

- Integral dial-up modem and ethernet port. External GSM modem (optional)
- Solid state CompactFlash for data storage

TWS - the traveling wave technique

General description

- The traveling wave uses the double ended method of fault location
- An accurate time reference is provided by GPS time synchronization

TWS technique... not effected by line transpositions, mutual coupling of parallel lines or changes in line construction

The distance to fault is proportional to the difference in arrival time (T1A – T1B), the length of line (L + L) and the propagation velocity

TWS devices installed at line ends trigger on the arrival of the wave and assign an accurate time tag

Consistent accuracy eliminates need to send out multiple line patrols and helicopters to identify the fault site

Can save hours of search time and reduce costs

Faster restoration time reduces system risk posed by the possibility of a second or third coincident fault

Faster restoration time reduces the costs of running uneconomic generation needed to maintain system security during the line outage

Most overhead line faults are transient and can be successfully re-closed

Multiple trips can occur at the same place over time due to a damaged insulator, growth of vegetation or conductor clashing

Accurate fault location pinpoints these trouble spots

Fast, automatic dissemination of results gets the information directly to the maintenance teams

Results can be filtered to select only those associated with a line trip

No need for intervention by protection engineers - saves time

- Most installations completed in one day
- FL-8 monitors up to 8 circuits, FL-1 limited to one circuit
- Split-core linear couplers are placed around the secondary wiring of the protection current transformers to capture the traveling waves
- Can be installed with the circuit still alive
- Device configuration via a web page - no special software required

Device status is available from the display - no need for a PC

Can view line module trigger time tags if remote communications have failed

Data can be downloaded onto a memory stick plugged into the USB port

A programmed memory stick can be used to upload device firmware and configurations

- Integral dial-up modem and ethernet port. External GSM modem (optional)
- Solid state CompactFlash for data storage

www.qualitrolcorp.com
TWS FL-8 and TWS-FL-1 Traveling wave fault locators

Provides exact fault location to one tower - improved performance
- Best accuracy to ±195 feet (±60 meters) independent of impedance methods
- Returns quality results for all types of faults, including high resistance ground faults and open circuit
- Accuracy is independent of line length, remote end infeed, non uniform line construction, conductor asymmetry and mutual coupling
- Can be used on lines with series compensation and tapped loads
- It is possible to compensate for lengths of underground cable

Reduce downtime by getting to the fault site faster
- Consistent accuracy eliminates need to send out multiple line patrols and helicopters to identify the fault site
- Can save hours of search time and reduce costs
- Faster restoration time reduces system risk posed by the possibility of a second or third coincident fault
- Faster restoration time reduces the costs of running uneconomic generation needed to maintain system security during the line outage

Track intermittent self clearing faults and focus maintenance at the right spot to prevent a major breakdown
- Most overhead line faults are transient and can be successfully re-closed
- Multiple trips can occur at the same place over time due to a damaged insulator, growth of vegetation or conductor clashing
- Accurate fault location pinpoints these trouble spots
- Planned maintenance can be undertaken to fix the ‘minor’ transient problem before it becomes a ‘major’ permanent one
- Fewer line trips reduces the number of voltage dips and subsequent customer complaints

Accurate results from circuit trips automatically displayed in the dispatch centre within minutes of the event
- A line trip is recognized by a change of state on a digital input or a 61850 GOOSE message
- A request for poll is sent to the central dispatch centre immediately after a line trip. The central PC polls each end of the line to retrieve data, calculate results and display them in a simple list view on a single screen
- Alternatively, the central software can be set to routinely poll all devices to collect data and display results

Maintenance crews alerted by email notification
- Fast, automatic dissemination of results gets the information directly to the maintenance teams
- Results can be filtered to select only those associated with a line trip
- No need for intervention by protection engineers - saves time

Fast installation and set up on multiple lines - no line or substation outage required
- Most installations completed in one day
- FL-8 monitors up to 8 circuits. FL-1 limited to one circuit
- Split-core linear couplers are placed around the secondary wiring of the protection current transformers to capture the traveling waves
- Can be installed with the circuit still alive
- Device configuration via a web page - no special software required

Display, keypad and USB port allow more interaction with the device
- Device status is available from the display - no need for a PC
- Can view line module trigger time tags if remote communications have failed
- Data can be downloaded onto a memory stick plugged into the USB port
- A programmed memory stick can be used to upload device firmware and configurations

Modular, reliable hardware - flexible communications
- Integral dial-up modem and ethernet port. External GSM modem (optional)
- Solid state CompactFlash for data storage

TWS - the traveling wave technique
General description
- The traveling wave uses the double ended method of fault location
- An accurate time reference is provided by GPS time synchronization

TWS technique... not effected by line transpositions, mutual coupling of parallel lines or changes in line construction

The distance to fault is proportional to the difference in arrival time (T1A - T1B), the length of line (L1 + L2) and the propagation velocity

TWS FL-8 - modular - monitors 2, 4, 6, or 8 lines
TWS FL-1 - fixed format - monitors 1 line

www.qualitrolcorp.com
TWS FL-8 and TWS-FL-1 Traveling wave fault locators

TWS - Traveling wave application

**General description**
- Installation requires minimal cabling
- Mount GPS antenna with a clear view of the sky to ensure good GPS lock and time synchronization
- Fit linear coupler transducers to the secondary of the protection current transformer wiring
- Connect digital inputs or enable GOOSE messaging to detect line trips
- Connect communication channel to allow data to be processed at a central location - essential for correct double-ended operation
- Each TWS FL-8 can monitor up to 8 line ends - for use in centralized relay rooms
- Each TWS FL-1 can monitor one line end - for use in distributed substations

**Features**
- Data download, storage and processing
- Device creation and configuration
- Comprehensive viewer for manual analysis of waveforms
- Health check overview to quickly identify any device or communication defects
- Full support for legacy TWS and DSFL (Linux and DOS versions)

---

TWS FL-8 and TWS-FL-1 Traveling wave fault locators

**General description**
- Full client-server architecture with separate communications manager module
- All data stored in an SQL database
- Ideal for large installations with a central server, remote clients and multiple communication managers to share the burden of collecting data from different types of devices

**Features**
- Data download, storage and processing
- Device creation and configuration
- Comprehensive viewer for manual analysis of waveforms
- Health check overview to quickly identify any device or communication defects
- Full support for legacy TWS and DSFL (Linux and DOS versions)
TWS FL-8 and TWS-FL-1 Traveling wave fault locators

TWS - Traveling wave application

General description
- Installation requires minimal cabling
- Mount GPS antenna with a clear view of the sky to ensure good GPS lock and time synchronization
- Fit linear coupler transducers to the secondary of the protection current transformer wiring
- Connect digital inputs or enable GOOSE messaging to detect line trips
- Connect communication channel to allow data to be processed at a central location - essential for correct double-ended operation
- Each TWS FL-8 can monitor up to 8 line ends - for use in centralized relay rooms
- Each TWS FL-1 can monitor one line end - for use in distributed substations

iQ+ - Configuration and analysis software

General description
- Full client-server architecture with separate communications manager module
- All data stored in an SQL database
- Ideal for large installations with a central server, remote clients and multiple communication managers to share the burden of collecting data from different types of devices

Features include
- Data download, storage and processing
- Device creation and configuration
- Comprehensive viewer for manual analysis of waveforms
- Health check overview to quickly identify any device or communication defects
- Full support for legacy TWS and DSFL (Linux and DOS versions)

www.qualitrolcorp.com
TWS FL-8 and TWS-FL-1 Traveling wave fault locators

TWS - Case study (from Europe). Tree contact on a 65.8 km 400 kV overhead line

Impedance distance to fault (DTF) versus traveling wave distance to fault (DTF)

Details of the fault from each end of the line from DFR analysis (substation names blanked out due to confidentiality agreements)

Single phase to ground fault. DFR record and impedance based distance to fault calculation from end X

Impedance method puts fault at 45.4 km from end X

IQ+ software and traveling wave distance to fault calculation from end X

The traveling wave method employed by the TWS FL-8 automatically calculates the distance to fault from end X as 45.3 km

Summary of results

<table>
<thead>
<tr>
<th>DTF confirmed by line patrol</th>
<th>TWS FL-8 result</th>
<th>TWS FL-8 accuracy</th>
<th>Impedance based result</th>
<th>Impedance based accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.2 km (28.09 miles)</td>
<td>45.3 km (28.15 miles)</td>
<td>0.15% of line length or 100 m [328.08 foot]</td>
<td>48.4 km (30.07 miles)</td>
<td>4.7% of line length or 3200 m [10,498 feet]</td>
</tr>
</tbody>
</table>

Note: Even an accuracy of 4.7% produces an error of 3.2 km [2 miles] (approximately 11 tower spans) on a line length of 65.8 km [40.89 miles]. Impedance errors can be as high as 20% of line length for certain types of fault equating to a 48km [30.39 mile] error on a 200 km [124.3 mile] line.

www.qualitrolcorp.com
**TECHNICAL SPECIFICATIONS**

**Power supply**
- Voltage range: 88 - 300 VDC / VAC, 42.5 to 67.5 Hz (optional 36 - 72 VDC)
- Power: 20 VA
- Auxiliary output: DC output 12 VDC at 750 mA

**MMI**
- Display: Backlit LCD, 114 x 49mm - 240 x 80 dots
- Keypad: 7 button membrane keypad
- Status: 9 LEDs (healthy, alarm, trigger, clock sync, comms, status)

**Line modules**
- TWS FL-1: Fixed format with one line module
- TWS FL-8: 2 line modules expandable to 8 in steps of 2
- Channels: 3 (one per phase) from external linear couplers - 12 bit ADC
- Gain: Programmable full scale deflection
- Triggering: Programmable threshold level
- Sample rate: 20 MHz, 10 MHz, 5 MHz, 2.5 MHz or 1.25 MHz
- Diagnostics: Automatic test of channel front end to prove operation

**Digital inputs**
- 2 per line module
- Wide ranging input from 48 to 250 VDC - selectable debounce

**Storage**
- CompactFlash: 4 GB allowing storage of 2100 records from 8 line modules at a sampling rate of 2.5 MHz (option for 8GB on request)
- Modes: Selectable locked or cyclic buffer
- Clock: Internal
  - Synchronized by internal GPS module (master) or via NTP over LAN and a 1 pps (slave)
  - Master 100 ns. Slave 1 microsecond
- GPS antenna: IRIG-B out to synchronize other IEDs
- Lead length: 10 meters [33 feet] (optional extension leads available
- Mounting: Via 25mm [1 inch] pipe mast
- Comms: Internal PSTN (V.90) modem (optional on COM 4)
- Ethernet port: 2 x 100 Mbits - one RJ45 for local connection at the front and one RJ45 (with option for fiber) on the rear port
- USB: One port to facilitate firmware upgrade and manual download of data
- Serial: 3 x RS 232 provided (one front panel, two on rear), 1 x RS 485 on rear panel

**Alarms**
- 4 provided
  - 1 (normally closed) for system healthy
  - 3 (normally open) for lost lock, trigger and high priority trigger and fixed buffer
  - 80% full
  - DTF confirmed by line patrol

**Configuration**
- iQ+ Master station
- Web page: Edit configuration and view diagnostics
- Configuration: Access via browser - edit settings, manual trigger, view last waveform

**Environmental**
- Temperature: Operating: -5 to +50°C [23 to 122°F], Storage: -30 to +70°C [-22 to 158°F]
- Humidity: 0 to 95% non-condensing

**Immunity**
- IEEE, EU and IEC
  - Conforms to relevant specifications for monitoring / control equipment in HV substations

**Mechanical**
- Enclosure: IP 41, 19” rack-mountable
- TWS FL-8: 3U device - H x W x D: 132.5 mm [5.2"] x 487 mm [19.2"] x 362.2 mm [14.3”]
  - Weight: 11 kg [24.2 lbs]
- TWS FL-1: 2U device - H x W x D: 90 mm [3.5"] x 487 mm [19.2"] x 362.2 mm [14.3”]

---

**TWS FL-8 and TWS-FL-1 Traveling wave fault locators**

**TWS - Case study (from Europe). Tree contact on a 65.8 km 400 kV overhead line**

Impedance distance to fault (DTF) versus traveling wave distance to fault (DTF)

**Details of the fault from each end of the line from DFR analysis (substation names blanked out due to confidentiality agreements)**

- Single phase to ground fault.
- DFR record and impedance based distance to fault calculation from end X
- Impedance method puts fault at 45.4 km from end X

**IQ" software and traveling wave distance to fault calculation from end X**

- The traveling wave method employed by the TWS FL-8 automatically calculates the distance to fault from end X as 45.3 km

**Summary of results**

<table>
<thead>
<tr>
<th>DTF confirmed by line patrol</th>
<th>TWS FL-8 result</th>
<th>TWS FL-8 accuracy</th>
<th>Impedance based result</th>
<th>Impedance based accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.2 km [28.09 miles]</td>
<td>45.3 km</td>
<td>0.15% of line length or 100 m [328.08 feet]</td>
<td>48.4 km [30.07 miles]</td>
<td>4.7% of line length or 3200 m [10,588 feet]</td>
</tr>
</tbody>
</table>

Note: Even an accuracy of 4.7% produces an error of 3.2 km [2 miles] (approximately 11 tower spans) on a line length of 65.8 km [40.89 miles]. Impedance errors can be up to 20% of line length for certain types of fault equating to a 40km [24.85 mile] error on a 200 km [124.3 mile] line.

---

www.qualitrolcorp.com
Reduce downtime by getting to the fault faster

Track intermittent self-clearing faults and focus maintenance at the right spot to prevent a major breakdown

Accurate results from circuit trips automatically available in the dispatch center within minutes of the event

Maintenance crews alerted by email notification

Supersedes the successful TWS Mark VI and DSFL devices

**Product Summary**

**Description**
AA device that provides extremely precise fault location on multiple lines enabling operation and maintenance engineers to respond rapidly to events and correct defects at minimum cost and maximum efficiency

**Application**
Fault location on interconnected overhead lines where high availability is important. Accurate, consistent results for all types of faults quickly displayed in a control room or engineering center where it is needed to direct maintenance teams and reduce downtime

**TWS FL-8 and TWS FL-1**
Traveling wave fault locators

minimize search time and reduce expensive downtime
...what is your time worth?

QUALITROL® Field Services
QUALITROL® provides on-site commissioning/start-up and comprehensive maintenance contracts to all customers worldwide. To further improve reliability, an extended warranty is available on selected products commissioned by QUALITROL®.

QUALITROL® Educational Services
QUALITROL® professional training (designed to achieve hands-on performance based objectives) prepares operations, maintenance, and engineering personnel to install, test, configure, operate and maintain QUALITROL® products.

QUALITROL® Accelerated Delivery
QUALITROL® provides accelerated delivery on many products and services including replacements, spare parts and repairs.

About QUALITROL®
QUALITROL® manufactures substation and transformer monitoring and protection devices used by electric utilities and manufacturing companies. It is the global leader in sales and installations of transformer asset protection equipment, fault recorders and fault locators. Established in 1945, QUALITROL® produces thousands of different types of products on demand, each customized to customers’ unique requirements.

©2011 QUALITROL® Company LLC. an ISO 9001:2001 systems certified company. All rights reserved. Information subject to change without notice.
All trademarks are properties of their respective companies, as noted herein. IP-F21-02L-01E.

Email: info@qualitrolcorp.com
www.qualitrolcorp.com

Defining Reliability

©2011 QUALITROL® Company LLC. an ISO 9001:2001 systems certified company. All rights reserved. Information subject to change without notice.